Wasserstein Generative Adversarial Network

نویسندگان

  • Wenbo Gong
  • Yingzhen Li
  • Mark Rowland
چکیده

Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. There are still many remaining problem of GAN training. In this thesis, we gives a comprehensive review of recently published methods or analysis on GAN training, especially the Wasserstein GAN and FlowGAN model. We also discuss the limitation of the later model and use this as the motivation to propose a novel generator architecture using mixture models. Furthermore, we also modify the discriminator architecture using similar ideas to allow ’personalized’ guidance. We refer the generator mixture model as Mixflow and mixture of discriminators as ’personalized GAN’ (PGAN). In experiment chapter, we demonstrate their performance advantages using toy examples compared to single flow model. In the end, we test their performance on MNIST dataset and the Mixflow model not only achieves the best log likelihood but also produce reasonable images compared to state-of-art DCGAN generation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model

In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adv...

متن کامل

Adversarial Variational Optimization of Non-Differentiable Simulators

Complex computer simulators are increasingly used across fields of science as generative models tying parameters of an underlying theory to experimental observations. Inference in this setup is often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-di...

متن کامل

Voice Conversion from Unaligned Corpora Using Variational Autoencoding Wasserstein Generative Adversarial Networks

Building a voice conversion (VC) system from non-parallel speech corpora is challenging but highly valuable in real application scenarios. In most situations, the source and the target speakers do not repeat the same texts or they may even speak different languages. In this case, one possible, although indirect, solution is to build a generative model for speech. Generative models focus on expl...

متن کامل

Face Super-Resolution Through Wasserstein GANs

Generative adversarial networks (GANs) have received a tremendous amount of attention in the past few years, and have inspired applications addressing a wide range of problems. Despite its great potential, GANs are difficult to train. Recently, a series of papers (Arjovsky & Bottou, 2017a; Arjovsky et al. 2017b; and Gulrajani et al. 2017) proposed using Wasserstein distance as the training obje...

متن کامل

Varying k-Lipschitz Constraint for Generative Adversarial Networks

Kanglin Liu Abstract Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recent proposed Wasserstein GAN with gradient penalty (WGAN-GP) makes progress toward stable training. Gradient penalty acts as the role of enforcing a Lipschitz constraint. Further investigation on gradient penalty shows that gradient penalty may impose restrict...

متن کامل

Class-Splitting Generative Adversarial Networks

Generative Adversarial Networks (GANs) produce systematically better quality samples when class label information is provided., i.e. in the conditional GAN setup. This is still observed for the recently proposed Wasserstein GAN formulation which stabilized adversarial training and allows considering high capacity network architectures such as ResNet. In this work we show how to boost conditiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017